Why Asset Liability Analysis is important

- Interest rate risks are embedded into many insurance company products and also investments
 - General account annuities
 - Minimum guarantees
 - Book value surrenders
 - Universal life secondary guarantees
 - Long term care
 - Callable assets
- Important to recognize the costs and risks of the options insurance companies are writing
- We only get one scenario
ALM Tools

- Cash flow analysis
- Financial statistics
 - Duration
 - Convexity
- Valuing embedded liability options
- Asset liability efficient frontier analysis
- Benchmark Portfolios
- Replicating Portfolios

Sample ALM Model

- Liabilities
 - Single premium deferred annuities
 - $454 million reserve
 - $415 cash surrender value
 - $454 fund value
 - Issued over last 8 years
 - Guaranteed credited rates either 3% or 4%
 - 7% initial surrender charge grading to zero over 7 years
- Assets
 - $216 million corporate bonds
 - $64 million mortgage passthroughs
 - $174 million CMOs (Sequentialss and PACs)
Behavior Assumptions

- Assets – bonds calls and mortgage prepayments
 - Callable Bonds
 - Firms make irrational decisions
 - Delay calling in-the-money bonds
 - Call out-of-the-money bonds
 - Residential mortgage pre-payments
 - Outside models (ADCO, BondEdge)
 - Single factor assumptions
 - Impact of economic environment
 - Commercial mortgages
 - Yield maintenance or make-whole provisions

Behavior Assumptions

- Liability - “Excess Lapse” formulas
 - Typically Exponential Formulas
 - Mult * (Comp – Cred - Threshold)^exponent
 - Surrender charge adjustment
 - Lower exponent, higher multiple
 - Considerations in setting parameters
 - Product
 - Distribution System
 - Market
 - Considerations in setting Competitor Rate
Excess Lapse Function

Mult = 2.0
Exp = 2.5

Mult = 5.0
Exp = 1.5

Cash Flow Analysis

- Comparing expected cash flows from assets and liabilities
- Should include all cash flows
 - Assets
 - Coupon
 - Calls/Prepayments
 - Adjusted for defaults
 - Liabilities
 - Premium
 - Benefits
 - Expenses
 - Taxes
 - Shareholder dividends?
Cash Flow Projections – Pop Down Scenario

Net Cash Flows – Stochastic Scenarios
Maximum, Minimum, 25 and 75 Percentiles
Duration and Convexity

- **Duration**
 - Negative of the first derivative of the price function with respect to interest rates

 \[
 \text{Effective Duration} = \frac{(P_\text{-} - P_\text{+})}{2P_0 \Delta y}
 \]

 Where
 - \(P_0\) = Bond price.
 - \(P_-\) = Bond price when interest rate is incremented
 - \(P_+\) = Bond price when interest rate is decremented
 - \(\Delta y\) = change in interest rate in decimal form

- **Convexity**
 - Second derivative of the price function with respect to interest

 \[
 \text{Effective Convexity} = \frac{(P_\text{-} + P_\text{+} - 2P_0)}{2P_0 (\Delta y)^2}
 \]

 Where
 - \(P_0\) = Bond price.
 - \(P_-\) = Bond price when interest rate is incremented
 - \(P_+\) = Bond price when interest rate is decremented
 - \(\Delta y\) = change in interest rate in decimal form
Calculating Duration and Convexity

- **Liabilities**
 - Project liability cash flows over arbitrage free stochastic scenarios
 - Use either spot rates or spot rates plus asset OAS to discount cash flows
 - Calculated \(P_- \) and \(P_+ \) by increasing and decreasing starting yield curve

Issues:
- Future premiums (especially on flexible premium products) can lead to unusual results

Price Function for Assets and Liabilities

![Price Function Graph](image)

- **Market Value (\$ millions)**
 - Assets: Red Line
 - Liabilities: Yellow Line

- **Interest Rate Change (bp)**
 - Range from -150 to 150
Asset Duration and Convexity

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Market Value ($ millions)</th>
<th>Duration</th>
<th>Convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus 100 bp</td>
<td>144.3</td>
<td>5.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Plus 50 bp</td>
<td>148.5</td>
<td>5.4</td>
<td>-58.2</td>
</tr>
<tr>
<td>Base Line</td>
<td>152.4</td>
<td>5.0</td>
<td>-65.9</td>
</tr>
<tr>
<td>Minus 50 bp</td>
<td>156.1</td>
<td>4.2</td>
<td>-198.9</td>
</tr>
<tr>
<td>Minus 100 bp</td>
<td>159.0</td>
<td>3.4</td>
<td>-95.4</td>
</tr>
</tbody>
</table>

Liability Duration and Convexity

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Market Value ($ millions)</th>
<th>Duration</th>
<th>Convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus 100 bp</td>
<td>143.8</td>
<td>2.2</td>
<td>-66.9</td>
</tr>
<tr>
<td>Plus 50 bp</td>
<td>145.3</td>
<td>1.8</td>
<td>-93.7</td>
</tr>
<tr>
<td>Base Line</td>
<td>146.5</td>
<td>1.3</td>
<td>-117.8</td>
</tr>
<tr>
<td>Minus 50 bp</td>
<td>147.2</td>
<td>0.9</td>
<td>-12.7</td>
</tr>
<tr>
<td>Minus 100 bp</td>
<td>147.8</td>
<td>1.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>
Valuing Embedded Liability Options

- Example – Partial Free Withdrawals
 - Project average distributable profits with partial free withdrawals over stochastic scenarios (base line)
 - Remove partial withdrawals and adjust credited rate until average distributable profits equal base line
 - Difference in credited rate is the "value" of partial withdrawal benefit
 - Analysis can be extended to any embedded liability option

Asset Liability Efficient Frontier Analysis

- Extension of the efficient frontier from the capital asset pricing model (CAPM)
 - CAPM uses the rates of return on assets and the volatility of those returns to determine "optimal" portfolios
 - Asset liability efficient frontier analysis extends this concept to test various ALM strategies
Methodology

- Define Risk and Return
 - Anything that can be calculated from the projection output
 - Risk
 - Volatility
 - Number of scenarios with negative present values
 - Number of periods where surplus is negative
 - Return
 - Average present value of distributable profits
 - Number of scenarios where assets under management exceed x dollars

Methodology

- Develop a robust set of strategies
 - Investment
 - Crediting
 - Product design
- Run stochastic projections for each strategy
- Plot risk and return statistics
- Determine efficient strategies
- Decide on acceptable levels of risk and return
Sample

- Define 9 different reinvestment strategies
 - 50/50 5 year A and 5 year BBB corporate bonds
 - High quality (AAA) corporate short
 - High quality (AAA) corporate long
 - BBB corporate short
 - BBB corporate long
 - 100% PAC CMOs
 - 100% Passthroughs
 - 50% PAC CMOs, 50% A corporate long
 - 50% AAA corporate short, 50% BBB corporate long

Sample

- Risk and return statistics
 - Return
 - Average present value of distributable profits at 12%
 - Risk
 - Percentage of quarters with negative statutory profits
Advantages of ALEF Methodology

- Measure the impact of different strategies on key financial metrics
- Definition of risk and return consistent with company objectives
 - Not limited to standard definitions
- Allows for stochastic processes for any assumption
Benchmark Portfolios

- Used to evaluate investment performance
- Historical have been based on broad, market wide indices
 - Lehman (now Barclays) Aggregate index for bonds
 - S&P 500 index for equities
- More recently, companies have been developing customized benchmarks

Developing Customized Benchmark Portfolios

- Quality target
- Sector allocation
 - Option risk
 - Liquidity
 - Regulatory constraints
 - Duration targets
Sample Indices – Barclays Family of Indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Duration</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Treasury</td>
<td>5.32</td>
<td>2.01</td>
</tr>
<tr>
<td>Short Treasury</td>
<td>0.41</td>
<td>0.15</td>
</tr>
<tr>
<td>U.S. Treasury: U.S. TIPS</td>
<td>4.23</td>
<td>3.02</td>
</tr>
<tr>
<td>U.S. Credit</td>
<td>6.32</td>
<td>4.29</td>
</tr>
<tr>
<td>1-3 Yr Credit</td>
<td>2.03</td>
<td>2.28</td>
</tr>
<tr>
<td>U.S. Intermediate Credit</td>
<td>4.38</td>
<td>3.70</td>
</tr>
<tr>
<td>U.S. Long Credit A</td>
<td>12.5</td>
<td>6.01</td>
</tr>
<tr>
<td>U.S. Mortgage Backed Securities</td>
<td>2.92</td>
<td>3.49</td>
</tr>
<tr>
<td>U.S. Corporate High Yield</td>
<td>4.44</td>
<td>9.48</td>
</tr>
<tr>
<td>Municipal Bond</td>
<td>8.24</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Benchmarks by Line of Business

- Linear combination of appropriate benchmarks
- Criteria is desired quality, duration and asset mix
- Can be aggregated across company or used on an LOB basis
Replicating Portfolios

- Definition
 - Portfolio of marketable securities developed to replicate the characteristics of a group of liabilities

Use of Replicating Portfolios

- Performance management
 - Investment strategy benchmarks
- Capital and value calculations
 - Solvency II
 - Economic Capital
- ALM and Risk Management
Process

- Analyze liability characteristics
 - Cash flows
 - Market value sensitivities
- Select securities for replicating portfolio
 - Zero coupon bonds
 - Credit default swaps (to add risk spread)
 - Call and put options (to capture optionally of liabilities)
- Use optimization techniques to select the “best fit” portfolio
 - More art than science

ALM Assumptions

- Asset Options
- Liability Options
Callable Bonds

- Finance theory has shown optimum time to call bond is when it is first in the money
- As usual, reality does not follow theory
 - Firms make irrational decisions
 - Delaying in-the-money calls
 - Calling an out-of-the-money bond
- Implications for asset projection models

Empirical Research

- King and Mauer (2000) examined factors affecting the timing of calls on non-convertible bonds
- Three groups:
 - Called immediately when bond went into the money
 - Called when bond was out of the money
 - Delayed call after bond went into the money
- Significant cost to delaying call
Factors Impacting In The Money Calls

- Opportunity cost of leaving bond outstanding (+)
- Amount of time bond has been in the money (+)
- Slope of the yield curve (+)

Implications For Setting Call Assumptions

- The more calls in are the money, the more likely the bond is to get called
- The longer a bond is in the money, the more likely it is to get called
- Out of the money bonds do get called
Policyholder Behavior Assumptions

- Flip side to call/prepayment assumption
 - Calls and prepayments are the exercise of a call options, usually in a down interest rate environment
 - Interest rate driven surrenders are the exercise of put options, usually in an up interest rate environment
- Usually vary by product type
- Should recognize impact of distribution on policyholder behavior

Types of Policyholder Behavior Assumptions

- Surrenders
- Partial withdrawals
- Flexible premium patterns
 - Higher or lower
- Other
Typical Formulas

- Usually compare credited rates with a defined competitor rate
- Competitor rates should reflect competition for funds in the market
 - Other insurance products
 - Money market accounts
 - CDs
- Include an adjustment for the impact of surrender charges
- Usually of the form:

 \[
 \text{Dynamic Lapse} = \text{Multiplier} \times 0.01 \\
 \quad \times [100 \times (\text{Credited Rate} - \text{Competitor Rate})]^{\text{Exp}} \\
 \quad \times (1 - \text{CSV/Fund Value})
 \]

Excess Lapse Formulas - Parameters

- Historically, for deferred annuities, multiplier and exponents of 2 and 2
- Recently, trend is towards higher multipliers and lower exponents
 - reducing the exponent reduces the steepness of the lapse curve
Excess Lapse Parameters

- Since the early 80’s, interest rates have exhibited a downward or level trend
 - Very few environments for evaluating excess lapse formulas
- Even with more experience, variety of product features and distribution systems will complicate assumption development process

Using mortgage prepayments to estimate deferred annuity excess lapses

- Extensive data on mortgage prepayments is available
- Although not perfectly analogous, prepayments and excess lapses should exhibit similar patterns
 - Surrender charges can be viewed as cost of refinancing
 - Savings on refinanced mortgage rate similar to increased yield on replacement annuity
Mortgage Refinance Decision - Simple

- Years to break even
 - Cost / monthly savings / 12
- Example:
 - 6% mortgage, $300,000 outstanding, 25 years remaining
 - Payment is $1,932
 - Refinance opportunity
 - 5%, 30 year, $1,610 monthly payment
 - Cost: $2,000
 - Breakeven is about 7 months
 - Ignores additional 5 years worth of payments

Mortgage Refinancing Decision - Actuarial Approach

- Calculate present values under both options
- Select option with lower present value
Mortgage Refinancing – Efficiency Ratio

- Apply this analysis to historical data
 - May have to go back to pre housing bubble for meaningful data
- Develop a function that relates likelihood of refinancing to based on “efficiency ratio”, i.e.

 \[
 \frac{\text{PV of costs after refinance}}{\text{PV of cost before refinance}}
 \]

Extension to Excess Lapse Assumption

- Use efficiency ratio function to develop excess lapse formula
- Differences between annuity surrenders and mortgage refinancing
 - Market conditions
 - Tax impacts
 - Surrender charges
Final Thoughts

- ALM analysis performed over multiple scenarios – actual results occur in one scenario
 - Averages are important, but so are distribution of results
 - Results in the tails can provide useful insights
- ALM is heavily dependent on assumptions
 - Policyholder behavior
 - Asset calls and prepayments
- Good data not always available
 - Use best estimate, but useful to sensitivity test
- The world is always changing – and we only have a rear view mirror

Contact Information

Greg Roemelt
Towers Watson
71 S. Wacker Drive
Chicago, IL 60606
312.201.6317
Greg.Roemelt@TowersWatson.com