Secondary Guarantees – UL & VUL Products

Michael LeBoeuf, Aon Consulting Phil Ferrari, Aon Consulting Mitchell Schepps, Aon Re Inc.

Southeastern Actuaries Conference Amelia Island, Florida Spring Meeting June 11th, 2003

Presentation Overview

- For Universal Life and Variable Life Products
 - Description of Secondary Guarantee Provisions
 - Valuation Changes and Their Impact on Secondary Guarantee Designs
 - Methods Used to Manage the Financial Impact of XXX and AXXX
 - Impact of the 2001 CSO Mortality Table
- Reinsurance Market Overview
 - UL Secondary Guarantees
 - Current Environment

Description of Secondary Guarantee Provisions

- Stipulated Level Premium
 - Most common
 - Provides a guarantee of X years so long as a specified level annual premium of Y is paid.
 - Typically has little funding flexibility
 - May provide an interest discount for pre-payment of premium.
 - May provide a catch-up provision.

Description of Secondary Guarantee Provisions

Shadow Accounts

- Policy will not lapse so long as a secondary policy account has positive value.
 - Not clear-cut to the consumer.
- COI guarantees < 1980 CSO and an interest rate > policy guarantees.
- Total flexibility in structuring a secondary guarantee period on a policy.
 - Better pre-payment value by discounting pre-payments

Description of Secondary Guarantee Provisions

- Annually Renewable Term
 - A cross between Stipulated Level Premium and Shadow Account Designs.
 - A defined premium structure like the level premium approach.
 - Interest discounting provides funding flexibility of Shadow Account designs.
 - Provides many advantages of a Shadow Account design and can be administered on a system that can handle a Stipulated Level Premium design.

Valuation Changes Impact on Secondary Guarantee Designs

- History
 - Initially no additional reserving requirements
 - Some Companies used a Gross Premium Valuation w/ PADS.
 - Valuation of Life Insurance Policies Model Regulation #830 (Guideline XXX)
 - Addresses the perceived inadequate reserve levels on secondary guarantee UL contracts.
 - Actuarial Guideline AXXX
 - Addresses how to appropriately value certain secondary guarantee designs under Guideline XXX.

6

Valuation Pre-XXX

- Offered long-term secondary guarantees and held the UL-CRVM reserve
 - UL Model Regulation did not address long-term guarantees.
- Some companies did recognize that the UL-CRVM reserve may not be sufficient.
 - Gross Premium Valuations used to become more comfortable that the UL-CRVM level was sufficient.

- Expected that secondary guarantee designs would now have reserve levels similar to traditional life contracts.
 - The new method for determining deficiency reserves resulted in large initial surplus strains
 - Depending on X-factors for the company
- Of course, the impact of XXX was not the same for all secondary guarantee designs...

- XXX does not apply to Shadow Account designs?
 - Policy forms did not have a specified premium(s).
 - That view ultimately went away.
- Today most view Shadow Account designs as a series of 1-year minimum premium guarantees for XXX.
 - The series of guarantees structured to be a single segment as defined under XXX (Section 4B).

- The resulting XXX reserve level for Shadow Accounts was at the $\frac{1}{2}$ c_x level using the unitary method.
- The same XXX result occurs on ART designs.
 - This fueled their rise in popularity.

- Actuarial Guideline AXXX addressed two issues.
 - Adjusting XXX reserves a "catch-up" provision.
 - Retroactive to the earlier of a state's adoption of XXX or the NAIC Accounting Practices and Procedures Manual.
 - Adjusting XXX reserves when the secondary guarantee is being pre-funded.
 - Applies to contracts issued on or after the later of the date of a state's adoption of XXX and 1/1/2003.

- Adjusting XXX reserves for a catch-up provision

 Basic and Deficiency reserves are computed as if the secondary guarantee premium requirements are met.
- Basic reserve is reduced by:

 $Catch - Up \times \frac{Basic \text{ Re serve}}{Basic + Deficiency \text{ Re serve}}$

– Basic reserve may not be less than zero.

• Deficiency Reserve is reduced by

 $Catch - Up \times \frac{Deficiency \text{ Re serve}}{Basic + Deficiency \text{ Re serve}}$

- Deficiency reserve may not be less than zero.
- Adjustment for a catch-up provision effectively only impacts a Stipulated Level Premium design.

- Adjusting XXX reserves for pre-funding the secondary guarantee premiums.
 - To establish appropriate reserve levels for Shadow Account and ART designs.
 - Impacts Stipulated Level Premium designs, but not as dramatically.

Steps for adjusting XXX reserves for pre-funding

- 1. Establish minimum gross premiums at issue that satisfy the secondary guarantee requirement.
 - For Shadow Accounts = the series of 1 year minimum premiums.
- Determine basic and deficiency reserves by applying 7B and 7C of the XXX Model Regulation.
 - For Shadow Account and ART designs, unitary reserves (¹/₂ c_x) are developed

- 3. Determine amount of actual premiums paid in excess of minimum gross premiums from step 1.
 - For Shadow Account designs = the value of the shadow account.
 - For ART and Stipulated Level Premium contracts = cumulative premiums paid in excess of minimum secondary guarantee requirements.
 - Adjusted with interest credited at the rate specified under the secondary guarantee.

16

- 4. Determine the single premium payment necessary at the valuation date to fully fund the secondary guarantee.
 - Assume no previous pre-funding. I.e. For a Shadow Account design the value of the shadow account is zero
 - Divide the result in Step 3 by the result in Step 4.

- 5. Compute a net single premium on the valuation date for the coverage provided by the secondary guarantee for the remainder of the secondary guarantee period.
 - Use any value table and select factors authorized in Section 5A of the XXX Model Regulation.
 - This allows the use of the 10-year select factors incorporated into the 1980 amendments to the SVL or the 19-year select mortality factors in the XXX Model Regulation.
 - X-factors may not be used.

6. Determine the "net amount of additional premiums" by multiplying by multiplying ratio developed in Step 4 by the difference in the NSP from Step 5 and the XXX basic & deficiency reserves calculated in Step 2.

Step $6 = Step \ 4 \times (Step \ 5 - Step \ 2)$

This is the maximum amount of additional reserve impact from AXXX.

- Calculate a "reduced deficiency reserve" by multiplying the deficiency reserve by 1 - the ratio from Step 4.
 - Cannot be less than zero.
 - By pre-funding, part of the deficiency reserve can be turned into basic reserve.
 - A potential benefit from a tax reporting perspective.

- 8. Total Reserve is the lesser of the NSP from Step 5 and the amount of Step 6 plus the total basic and deficiency reserves
 - This amount should be reduced by policy surrender charges.
 - Note the guideline indicates surrender charges are the account value less the cash surrender value.
 - If this amount is less than the basic and deficiency reserves from Step 2, then the Step 2 reserves are to be used and no further calculation is required.

- 9. Determination of increased basic reserve
 - The increased basic reserve is equal to the total reserve from Step 8 less the reduced deficiency reserve from Step 7.

• Easy to see impact and formula usage through a simple example at one duration...

Impact of Regulation AXXX

Current AV	45.24	Step 2	2.46
Current CSV	22.39	Step 3	38.88
Surrender Charge	22.85	Step 4	145.92
UL CRVM Res	33.82	Ratio	27%
		Step 5	341.94
		Step 6	90.44
		Step 7	0.00
		Step 8	70.05
		Step 9	70.05

• Policy Reserves increased from 33.82 to 70.05 due to the impact of AXXX.

23

Product Design

- Significant effort today to minimize the impact of AXXX on Shadow Account and ART designs.
- Focused on introducing features limiting early duration build-up of pre-payment values.

- Surplus Relief
 - Executed within the corporation or using an outside reinsurance facility.
 - While saving the company's own capital, the cost for the surplus relief has not sufficiently improved product returns to the company.

• Reinsurance

- Reinsurance companies willing to reinsure both the mortality and no-lapse risk on the contract.
- Some arrangements back-load the cost of the surplus relief for the insurance company.
 - Allowed the insurer to earn an acceptable return.
- Unfortunately, current market conditions have severely limited reinsurance outlets.

• Other

- Use of alternate accounting methods to determine whether or not the a policy with the secondary guarantee truly adds value to the company.
 - GAAP (incremental basis)
 - PPM for Canadian companies
- OK as long as the company does an effective job of managing statutory capital.

Impact of the 2001 CSO Mortality Table

- Could see a decrease in level secondary DB guarantee premiums as a result of reserve relief from use of new table
- Note that typical of UL pricing, funding a pricing model with less premium yields higher profits due to increase in COI charges
 - 15 to 20 % reduction to level premiums possible to reach baseline profits; however, great likelihood of putting the "option into the money"
- Probably will see 5-10% decreases in level premiums
 - Impact varies by age and class

Case Study - UL

Product Parameters:

- Annually Renewable Term Premium design with a competitive lifetime guarantee.
- Review Impact of XXX and AXXX on design
- Add a reinsurance arrangement to reach double digit profit targets
- Arrangement is an 90% first dollar, YRT agreement
- Mortality and financial reinsurance
- Financial reinsurance is for ceding of the difference between XXX and CRVM reserves

Case Study - UL

Model Office Parameters:

- \$10,000,000 of first year new premium
- \$1,000,000 face amount policies
- 4 age, male model: 35, 45, 55, 65, 75
- Risk classes are SPNS, PNS, SNS, SSM

Pre-XXX/Pre-AXXX Results

Profitability		
Measure	Baseline	
IRR	14.54%	
PVDE	\$3,510,500	
Profit Margin	3.83%	

- No secondary guarantee
- Premium funding at level pay to endow
- Based on current assumptions

31

Impact of Regulation XXX

Profitability			
Measure	XXX		
IRR	13.03%		
PVDE	\$3,588,000		
Profit Margin	3.14%		

- Secondary guarantee added, e.g by rider
- YRT design yields no additional reserve impact from XXX
- Profit declines due to premium increase for guarantee
 - Premium to endow based upon current charges and a reduced interest rate

Impact of Regulation AXXX

Profitability		
Measure	AXXX	
IRR	6.63%	
PVDE	\$250,600	
Profit Margin	0.22%	

- Section 4 of AXXX for a YRT secondary guarantee produces reserves much higher than priced for
- "Pre-funding" of provision hurts
 - Paid level premium vs. stipulated YRT premium

Impact of Regulation AXXX

Model Office Reserve Comparison By Duration					
(in millions)					
Method	5	10	20	30	40
XXX	38	92	251	432	560
AXXX	49	123	278	445	560

- Reserve build-up
 - Cross-over point exists, but at late duration
- Need to find a solution
 - Reinsurance
 - Re-tooling product to manage the "pre-funding ratio"

Impact of the 2001 CSO Table

1980 CSO vs. 2001 CSO - Baseline			
Measure	1980 CSO	2001 CSO	Difference
IRR	14.54%	15.05%	0.51%
PVDE	\$3,510,500	\$3,427,100	-\$83,400
Profit Margin	3.83%	3.74%	-0.09%

- Reserves decrease, so do surrender charges
- Strain decreases, so does profit stream
- Basically, a wash

35
Impact of the 2001 CSO Table

1980 CSO vs. 2001 CSO - Secondary Guarantee Under AXXX			
Measure	1980 CSO	2001 CSO	Difference
IRR	6.63%	8.08%	1.45%
PVDE	\$250,600	\$1,878,000	\$1,627,400
Profit Margin	0.22%	1.64%	1.42%

- Reserve decrease more substantial, outweighs decrease in surrender charges
- Strain decreases with increases to profit stream
- Improves results for secondary guarantee provisions

UL Case Study Summary

- XXX and AXXX have companies scrambling to find a solution without raising consumer prices
 - Who will raise prices first and at what cost?
 - Help is coming with 2001 CSO table, but will it be enough?
 - New designs will emerge over the next 6-12 months
 - Beware of designs that seem abusive
 - Regulators may implement the "next" or "revised" guideline on a retroactive basis for abusive designs

Closing Remarks

- Changes in Regulations often create opportunity to capture more market share through innovative product designs and alternative solutions.
- The full impact of AXXX is just now impacting companies.
- The next year should bring a flurry of new product activity from both insurance and reinsurance companies.

General Description

- Secondary Guarantees have been on VUL contracts for many years in the form of GMDB Benefits.
 - While commonly referred to as a GMDB benefit the risk profile under a VUL contract is very different from a VA contract.
 - Direct and reinsurance companies too often lump the structures together under one GMDB umbrella.
 - Leads to challenges introducing new designs to the market.

General Description

- Contracts currently offer guarantees for as short as 5 years to as long as a lifetime benefit
 - Short term guarantees
 - 5-10 years
 - Tied to contract minimum premium
 - Avoids early policy lapse by providing time to buildup sufficient cash surrender values.
 - Lifetime guarantees offered by many companies.
 - Premium requirements are typically 80 100% of the guideline level premium.
 - Not competitive with UL secondary guarantees.

Valuation Requirements

- Historically companies have not applied uniform reserve standards to GMDBs
- Regulatory sources that companies have looked to for guidance:
 - Standard Valuation Law
 - Variable Life Insurance Model Regulation ('83 & '89 revisions)
 - Universal Life Insurance Model Regulation
 - Valuation of Life Insurance Model Regulation (XXX)

Why do companies not follow the VL Model Regulation?

- Many states have not passed either the '83 or '89 revision
- Companies therefore either look to the SVL or the UL Model Regulation for guidance.
- Companies that used the UL Model Regulation were holding no additional reserve for the secondary guarantee
 - Same situation we had with Universal Life until XXX.

Actuarial Guideline XXXVII

- Set forth appropriate valuation methodology for secondary guarantees on Variable Universal Life Insurance.
- The guideline focused on the 1989 revisions of the Variable Life Model Regulation.

Actuarial Guideline XXXVII

- Establishes the methodology for reserves to be held in addition to the basic policy reserve when a secondary guarantee is present on a VUL contract.
- The additional reserve = MAX (OYT, AALR)
 - OYT = One-Year Term reserve
 - AALR = Attained Age Level reserve

Actuarial Guideline XXXVII

- Defines method for calculating OYT reserve and AALR.
 - Project policy values using:
 - the valuation interest rate
 - COI charges equal to minimum valuation mortality
 - Premiums required to maintain the guarantee
 - No other credits or charges (I.e. policy loads are not used)
 - Assume contingent requirements to continue guarantee met.
 - I.e. "catch-up provision" is satisfied.
 - Projection of policy values for entire guarantee period
 - Even if projected values go negative.
 - Negative policy value set to zero.

OYT reserve

- Equals the "aggregate total of term costs", if any, covering a period no more than one year from the valuation date.
 - "Aggregate total term costs" = PV of guaranteed death benefits provided for in absence of guarantee.
 - A death benefit provided for in absence of the guarantee is provided as long as the projected policy value > 0.
 - Project policy values assuming an immediate 1/3 drop in separate account asset values and using assumptions outlined earlier.

OYT Reserve

- If the one year projected policy value after the 1/3 drop is > 0, then the OYT Reserve is zero.
- If the projected policy value is < 0, then a reserve is established for the portion of the year not covered by the project value.
 - Maximum OYT Reserve = c_x

- Designed to fund any deficiency in the secondary guarantee premium over the secondary guarantee period.
- Structured to build and decrease slowly through periods of weak and strong performance in the policy's investments in the separate account.
- If an extended period of favorable investment performance results in redundant reserves, may be able to release all or part of the redundant reserves.

- The reserve can never be less than zero.
- The reserve is equal to the "residue" of the prior year's AALR, increased or decreased by a "payment".
- Residue is equal to:
 - Prior year's AALR increased at the valuation interest rate
 - Less tabular claims not payable in the absence of the guarantee
 - Divided by the probability of survival

$$\frac{AALR_{t-1}(1+i_v) - (vq_{x+t}(if - AV_t = 0))}{1 - q_{x+t}}$$

• AALR

- Payment is equal to:
 - PV of future guaranteed minimum death benefits (A), less
 - PV of projected future death benefits payable in the absence of the secondary guarantee (B), less
 - Prior year's residue (C)
 - Funded over the remaining period for the secondary guarantee.
 - Note that (A) (B) is to be floored at zero.

Payment =
$$\frac{A - B - C}{\ddot{a}_{x+t:gp-t}}$$

 $gp = guarantee \cdot period$
 $GP = guarantee \cdot premium$
 $A = A_{\overline{x+t:gp-t}}$
 $B = AV_t + GP \ddot{a}_{x+t:gp-t}$
 $C = \text{Residue}_{t-1}$

Recent Developments

- Guarantees maintained solely based on the funding allocated to the fixed account.
 - Removing the volatility potential in the separate account can result in premiums competitive with UL secondary guarantee premiums.
 - Approach may raise questions on appropriate valuation methodology
 - XXX (AXXX) or XXXVII.

Recent Developments

- Restrictions on the separate account investments.
 - Placing restrictions on investments reduces volatility of returns, while limiting the sacrifice in terms of yields.
 - Allows the insurer to manage the separate account risk that has been passed from the policyowner to the insurer by offering the guarantee.
 - May allow for more affordable long-term guarantees.

Case Study – VUL

- VUL contract designed specifically for low level premium sales.
 - Low target premium
 - High early duration policy loads
 - Current assumption level premiums to carry policy to maturity very competitive against similar UL designs.

Key Policy Design and Pricing Parameters

• Charge Structure:

- 3 COI Bands
 - 0 249 K / 249 999 K / 1 M +
 - Vary by class: 4 Nonsmoker / 2 Smoker
- High Per Unit Loads for first 4 policy years.
 - Also vary by band & class
- Pricing Assumptions:
 - All premiums to Separate Account
 - Separate Account Yield net of expenses: 9%

Base Policy Profitability Results

- Assumed Premium = Level pay, term fund to maturity
 @ 5.75%
- Profit Results:
 - -1^{st} Year Surplus Strain = 76.61% of Premium
 - Profit Margin = 7.06%
 - P.V. Profits / P.V. Premium @ 6.75%
 - Statutory IRR = 20.21%

Secondary Guarantee Rider Design

- Required Premium = Level Premium to Maturity @ 5%
 - Premium Level 25-50% higher than assumed premium on base policy pricing.
- Additional level lifetime unit load added to rider to offset additional risk and reserve costs.
 - Unit load greater than the .01 / 1,000 / month typically associated with VUL secondary guarantees.

Secondary Guarantee Rider Profit Results

- Deterministic Scenario
 - Static Net Yield in Separate Account @ 9%
 - Secondary guarantee never "in the money"
- Profit Results
 - -1^{st} Year Surplus Strain = 84.17% of Premium
 - Profit Margin = 10.00%
 - P.V. Profits / P.V. Premium @ 6.75%
 - Statutory IRR = 10.23%

Secondary Guarantee Rider Profit Results

- Initial Stochastic Model
 - Generated 100 scenarios.
- No investment restriction placed on policyowner
 - Assumed 100% Investment in S&P 500
 - High potential return / High volatility
- Reported results:
 - 31% of all cells go "in the money"
 - PV of Profits Statistics
 - Mean: \$ 3.4M
 - Std. Dev. :\$ 700k
 - Mean difference vs. baseline: \$500k

Initial Stochastic Model

Graph – Range of Profitability on 100% S&P 500

Stochastic Results 6,000 PV After Tax Profit (000's) 100% S & P 5,000 4,000 Baseline 3,000 2,000 1,000 0 1 51 61 71 81 91 11 21 31 41 **Scenario**

Secondary Guarantee Rider Profit Results

- Second Stochastic Model
 - 60% Investment in S&P 500
 - 40% in Intermediate Term Bond Fund
 - Portfolio Rebalanced Monthly
- Reported results:
 - 8% of all cells go "in the money"
 - PV of Profits Statistics
 - Mean: \$ 3.3M
 - Std. Dev. :\$ 460k
 - Mean difference vs. baseline: \$385k

Second Stochastic Model

Graph – Range of Profitability on 60/40 Scenarios

Secondary Guarantee Rider Profit Results

- Third Stochastic Model
 - 40% Investment in S&P 500
 - 60% in Intermediate Term Bond Fund
 - Portfolio Rebalanced Monthly
- Reported results:
 - 2% of all cells go "in the money"
 - PV of Profits Statistics
 - Mean: \$ 3.2M
 - Std. Dev. :\$ 330k
 - Mean difference vs. baseline: \$300k

Third Stochastic Model

Graph – Range of Profitability on 40/60 Scenarios

Stochastic Results

VUL Case Study Summary

- Placing investment restrictions can allow a company to offer more competitively positioned secondary guarantees on VUL.
- While risk can be minimized, profits are impacted by A.G. XXXVII.
 - Much less than UL has been impacted by XXX & AXXX, but takes additional capital nonetheless.
- Reinsurance has not been factored in
 - Need to work with reinsurance companies that understand this risk is not the same as GMDB on VAs

Closing Remarks

- Competitively priced guarantees are possible on VUL contracts.
 - Whether using the general account or an asset allocation model.
 - Individuals may be able to purchase competitive death benefit guarantee and invest excess funds all within one product.
 - Surplus impact of A.G. 37 is much less than XXX / AXXX.

Reinsurance of Universal Life With Secondary Guarantees

Mitchell A. Schepps Aon Re Inc.

Southeast Actuaries Club June 18, 2003

Reinsurance Issues

- Structure
- Market
- Future?

Structure

- YRT
- Coinsurance
- Surplus Relief

YRT

- Quota Share of Mortality Risk and Secondary Guarantee Risk
- Reinsurer agrees to reimburse ceding company for death benefits
- Reinsurer covers secondary guarantee risk

72

YRT-Secondary Guarantee Risk

- If the policy goes "in the money", the reinsurer:
 - 1. Waives reinsurance premium, or
 - 2. Reimburses ceding company COI rate

YRT-Secondary Guarantee Risk

• Reinsurer must hold the difference between XXX reserve and CRVM reserve

YRT Costs

Three basic charges:

- YRT rate for mortality
 -Discount to COI charges
 -Percentage of mortality table (e.g. 1975-80 Table)
- 2. Premium for actual secondary guarantee risk: Usually expressed as a percentage of 1 above.
- 3. Charge for holding reserves: Usually expressed as a basis point charge on reserves.

Secondary Guarantee Reserves

- Usually backed by Letter of Credit
- Sometimes backed by a Reg. 114 Trust

Coinsurance

- All policy benefits are coinsured
- Reinsurer participates in account values, surrender charges, secondary benefits, etc.
- Treaty must follow Model Reg.
- Much more complex than YRT structure

Financial Reinsurance

- Even more complicated
- Financial Reinsurance players not interested in long term arrangements

Current Reinsurance Market

- Very limited
- Only a few participants
- Little competition

Why the Lack of Capacity?

- Reinsurers do not want interest rate risk
- Limited LOC capacity
- Reduced revenue per dollar of LOC used compared to term coinsurance

Some Other Issues

- Reinsurance Premium Guarantees
- Extended Maturity
- Conversions
- Automatic Binding Limits

Reinsurance Premium Guarantees

- LOC charges are usually locked for lifetime for inforce business.
- Typically provides 30 days notice for increase of LOC charges for new business.
- Reinsurer reserves the right to modify reinsurance premiums if:
- 1. Ceding company changes COI charges
- 2. Ceding company changes expense loads

The Future?

- No new markets seen in the near future
- LOC capacity is dwindling

Secondary Guarantees – UL & VUL Products

Michael LeBoeuf, Aon Consulting Phil Ferrari, Aon Consulting Mitchell Schepps, Aon Re Inc.

Southeastern Actuaries Conference Amelia Island, Florida Spring Meeting June 11th, 2003

