2019 Fall Meeting

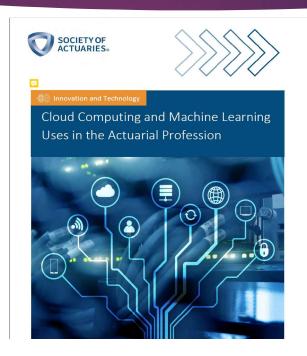
Intergalactic Machine Learning Tips From the Secret UFO Files in Roswell, New Mexico

November 22, 2019

Bob Crompton, FSA, MAAA Vice President, ARC Ga

EXECUTIVE SUMMARY

- ML currently being used for Life & Health actuarial work on limited basis
- There is some interest in ML for P/C ratemaking & reserving, but no specific cases were surfaced
- Most insurance ML applications seem to be in these areas:
 - Underwriting
 - Customer retention
 - Sales
 - Claims management


Martin Snow

Actuary With Expertise in AI, Machine Learning & Predictive Analytics

SOA/Milliman Report

Machine Learning – What Is It?

A subfield of artificial intelligence concerned with allowing machines, programs, or algorithms to learn and improve from data.

- SOA/Milliman Report

Machine Learning – What Is It?

The field of Machine Learning seeks to answer the question, "How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?".

- Carnegie Mellon University

CASE STUDY 1: Individual Risk Scoring / Large Health Insurer

- Clustered Random Forest Algorithm
- Based on Historical Costs
 - Monthly cost records
 - > 100,000 members

CASE STUDY 2: Early Duration Lapse Rate Analysis / Life Insurer

- Algorithm not specified
- Added additional parameters to standard actuarial analysis
 - More robust estimates
 - A/E ratios MUCH closer to unity

CASE STUDY 3: Claim Fraud Detection / Large Health Care Consulting Firm

- Algorithm not specified
- Based on combining unsupervised models with semi- and fully-supervised models

Potential Near Term Uses of Machine Learning

- Auto insurance pricing based on telematics
- Health insurance pricing based on biometrics
- Loss reserving based on Individual Claims
- Mortality forecasting for Life/Annuity biz

Machine Learning vs. Human Learning

Machine Learning

Human Learning

Mediated by code

Mediated by sense experience

Digital

Analog

Machine Learning vs. Human Learning

How People Learn

- Rote memorization
- Analogies
- Generalizations & creation of conceptual hierarchies
- Historical comparisons
- Consideration of potential cause & effect chains
- Formalized thinking (for example, mathematical proofs)

How Machine-Learning Learns

Correlations

What Do We Mean By "Learning?" 4 Levels of Complexity

- Given a model, determine the "best" parameters
- 2. Determine the "best" sort of model for the problem
- Re-state the problem to a higher level of abstraction ie, make it more general
- 4. Re-frame the problem by approaching it with an entirely new set of references & background assumptions, ie, paradigm shift

Machine Learning – Potential Improvements

Implement Code Self-Modification

Use a human-like approach: cut & paste from web, or send a "code plz" request to Stack Overflow

Machine Learning – Potential Improvements

<u>Add Analog Input – Biologic Sensors</u>

- Adds potential to think continuously as well as discretely
- Science fiction-y

Machine Learning – Potential Improvements

Formal Language Programming

- Formal language is a highly structured way to unambiguously describe things.
 - Possibly describe analog experience
 - LEAN software used for mathematical proofs.

