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Introduction

Underwriters of annuity products and administrators of pension funds are under
financial obligation to their policyholder until the death of counterparty

They are subject to longevity risk when a population’s average lifespan increases
Things become even worse when U.S. interest rate is at its historic low level

When discount rate is low, present value of life-contingent cash flows can be hard to
manage (subject to greatest amount of longevity risk)
During periods of low interest rate, large asset management firms have incentives to
diversify their investment portfolio and seek alternative investment
The market for risk transfer of longevity risks are there (fact: longevity risk is
uncorrelated with financial risk)

This talk is not focused on interest rate risk or maturity mismatch; instead, we are
modeling mortality rates quantitatively (so the next step of research would be
development of pricing and hedging models)
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Research Question

Can we develop a better parametric mortality model?
Mortality rate (or, death rate): measure of number of deaths in a particular
population, scaled to the size of that population

Research Significance
To price insurance products
To ensure the solvency through adequate reserves

Mortality models are developed for projection of death rates
Increasing life expectancy of pensioners and policyholders can eventually translate
to higher-than-expected pay-out-ratios (longevity risk); needs to be managed

Some firms match annuity policies with life insurance policies (natural hedge)
Often, finding a perfect match is difficult

A potential way to manage such risk (pricing, risk transfer, regulation) is
parametric mortality model [Li, Li and Balasooriya (2018)]
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Research Significance

Research Significance
As of now, longevity risk transfer market is underdeveloped but promising
Bottleneck of research: lack of good data; we do theoretical modeling here

Insurance Economics
Insurance choice of households is closely related to mortality risk

Households: maximize expected utility function which is homogeneous with respect
to consumption at different times [Ando and Modigliani (1963)]
Attempts to explain for people’s allocation of assets in annuities during or near
retirement [Milevsky (1998)]

This research is focused on institutions, so individual risk preferences are not
considered, and pricing should be based on actuarial fairness
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Lee-Carter’s Method (1992)

Lee-Carter model has become a benchmark in modeling mortality rates
Central death rate: m(x , t) is defined for age group x observed in year t as d(x ,t)

L(x ,t)
Number of deaths at age x , d(x , t)
Average number of living at the age x , L(x , t) =

∫ 1
0 l(x + u, t)du

Suppose there are M age groups and T years of mortality data
Lee and Carter (1992) proposed the following simple linear regression model

log m(x , t) = αx + βx kt + εx ,t ,
M∑

x=1
βx = 1,

T∑
t=1

kt = 0 (1)

Only central death rate m(x , t) is observed. kt is unobserved and is called mortality
index. εx ,t ’s are random errors with mean zero and finite variance.
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Lee-Carter’s Method (1992)

Identification Constraints
Conditions

∑M
x=1 βx = 1 and

∑T
t=1 kt = 0 are imposed in finding the least squares

estimators, which are obtained by the singular value decomposition (SVD) method.

Singular Value Decomposition (SVD)
Mm×n = Um×mΣm×nV τ

n×n, where U and V are orthogonal matrices and Σ is a
diagonal matrix with nonnegative values on the diagonal. Write
U = (U1, · · · ,Um) and V = (V1, · · · ,Vn). Denote the positive values on the
diagonal of Σ as λ1, · · · , λr . Then M =

∑r
i=1 λi Ui V τ

i
SVD is used to obtain estimates of αx , βx and kt



Introduction Lee-Carter’s Method Proposed Model and Bias Correction Data Analysis and Simulation Conclusions

Lee-Carter’s Method (1992)

Effective Prediction
An important task of modeling mortality rates is to forecast future mortality
pattern

Hence, to better forecast mortality risk and hedge longevity risk, Lee and Carter
(1992) further proposed to model the estimated mortality index by a simple time
series model
Assumed that {kt} follows from an ARIMA(p,d,q) model defined as(

1 −

p∑
i=1

φi B
i

)
(1 − B)d kt = µ +

(
1 +

q∑
i=1

θi B
i

)
et , (2)

where et ’s are white noises
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Lee-Carter’s Method (1992)

Summary of LC Model
The popular Lee-Carter mortality model is a combination of (1) and (2), and a
proposed two-step inference procedure is to first estimate parameters in (1) by the
singular value decomposition method and then to use the estimated kt ’s to fit
model (2).
Many papers in actuarial science have claimed that an application of this model
and this two-step inference procedure to mortality data prefers a unit root time
series model, i.e., d = 1 in (2).
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Extensions and Applications

Since the seminal paper, many extensions and applications have appeared in the
literature; also appeared is an open R package (‘demography’)
For example,

Lee (2000)

Before proceeding directly to modeling the parameter k̂t as a time series process, the
k̂ ′ts are adjusted (taking α̂x and β̂x estimates as given) to reproduce the observed
number of deaths

∑
x Dxt , i.e., the k̃ ′ts solve∑

x
Dxt =

∑
x

Ext exp{α̂x + β̂x k̃t},

where Ext is the actual risk exposure. So for better prediction, a time series model is
fitted to k̃ ′ts.
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Extensions and Applications

Brouhns, Denuit and Vermunt (2002)
First model {

Dxt = Poisson(Extµx (t))
µx (t) = exp{αx + βx kt}

Use the same constraints in Lee and Carter (1992) to estimate αx , βx , kt by maximizing∑
x ,t
{Dxt(αx + βx kt)− Ext exp(αx + βx kt)}.

Denote the obtained estimators by α̂x , β̂x , k̂t . Next step is to fit a time series to the
mortality index k̂ ′ts as Lee and Carter (1992).
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Extensions and Applications

Li and Lee (2005)
Extended the Lee-Carter model to model a group of population m(x , t, i), where x , t, i
denote the age group, time and ith population, respectively.

Girosi and King (2007)
Cited more than a dozen of papers to confirm the wide implementation of the
Lee-Carter model by policy analysts around the world.
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Extensions and Applications

Cairns et al. (2011)

Compared six different stochastic mortality models. The functions β(i)
x , k(i)

t , and γ(i)
t−x

are age, period and cohort effects, respectively; x̄ is the mean age over the range of
ages being used in the analysis; σ̂2

x is the mean value of (x − x̄)2; na is the number of
ages.

log m(t, x) = β
(1)
x + β

(2)
x k(2)

t ;
log m(t, x) = β

(1)
x + β

(2)
x k(2)

t + β
(3)
x γ

(3)
t−x ;

log m(t, x) = β
(1)
x + n−1

a k(2)
t + n−1

a γ
(3)
t−x ;

logitq(t, x) = k(1)
t + k(2)

t (x − x̄);
logitq(t, x) = k(1)

t + k(2)
t (x − x̄) + k(3)

t ((x − x̄)2 − σ̂2
x ) + γ4

t−x ;

logitq(t, x) = k(1)
t + k(2)

t (x − x̄) + γ
(3)
t−x (xc − x).
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Extensions and Applications

D’amato et al (2014)
Employed the Lee-Carter model to detect common longevity trends. The model is

log mxt,i = αx ,i + βx ,i kt,i + εxt,i ,

where i denotes the ith population.

Lin et al (2014)
Employed the extended Lee-Carter model in Li and Lee (2005) to study the risk
management of a defined benefit plan.

Bisetti and Favero (2014)
Applied the Lee-Carter model to measure the impact of longevity risk on pension
systems in Italy.
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Extensions and Applications

Bootstrap Methods for Quantifying Uncertainty in Mortality Models
For interval estimation and/or projection errors, bootstrap methods have been
proposed

Haberman and Renshaw (2009) proposed three different bootstrap methods to
construct confidence intervals for interesting quantities based on the Lee-Carter
framework and a generalized linear Poisson model. Li (2010) used parametric
bootstrap. D’Amato et al (2012) proposed sieve bootstrap method based on
estimated errors in log mxt = αx + βx kt + εxt , where εxt follows from an AR(∞)
model.

Continuous Stochastic Differential Equations (SDE) for Modeling Mortality
Dahl (2004) selected an extended Cox-Ingersoll-Ross process; Biffis (2005) chose two
different specifications for the intensity process; Schrager (2006) proposes an M-factor
affine stochastic intensity; Elisa, Spreeuw and Vigna (2008) modeled stochastic
mortality for dependent lives.
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Our Discussion of Model Issues

Issues with Model Assumption
Constraint on mortality index

∑T
t=1 kt = 0

Since {kt} in (2) is random, the constraint
∑T

t=1 kt = 0 in (1) becomes unrealistic
and restrictive
For example, if one fits an AR(1) model to {kt}, say kt = µ+ φkt−1 + et , then we
have T−1∑T

t=1 kt
p→ µ/(1− φ) as T →∞ when |φ| < 1 independent of T

On the other hand, we have kT/T p→ µ{limx→γ
1−ex

−x } as T →∞ when µ 6= 0 and
φ = 1 + γ/T for some constant γ ∈ R

No trend term in time series; constraint too restrictive
Constraint

∑T
t=1 kt = 0 in (1) basically says µ in (2) must be zero

Hence, a modified model without any direct constraint on kt ’s is more appropriate
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Our Discussion of Model Issues

Issues with Inference Method
Singular value decomposition

There is no way to quantify the inference uncertainty
When all βx are the same (i.e., β1 = · · · = βM = 1/M), Leng and Peng (2016)
proved that the proposed two-step inference procedure in Lee and Carter (1992) is
inconsistent when the model (2) is not an exact ARIMA(0,1,0) model.

No asymptotic results available for the derived estimators
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Misunderstandings of Lee-Carter’s Method

Some recent literature in actuarial science interpret the LC model in a wrong way
Ignored the error terms εx ,t in the LC model

For example, by defining m0(x , t) as the true central death rate for age x in year t,
Dowd et al. (2010), Cairns et al (2011), Enchev, Kleinow and Cairns (2017) and
others interpreted the Lee-Carter model as

log m0(x, t) = αx + βx kt , kt = µ + kt−1 + et ,

M∑
x=1

βx = 1,

T∑
t=1

kt = 0. (3)

Model (3) basically says the true mortality rate m0(x , t) is random due to the
randomness of kt ’s
Another misinterpretation appears in Li (2010) and Li, Chan and Zhou (2015),
where the Lee-Carter model is treated as log m(x , t) = αx + βx kt without the
random error εx ,t in (1)
This is quite problematic because it simply says that log m(x , t) and log m(y , t) are
completely dependent as both are determined by the same random variable kt .
That is, central death rates are completely dependent across ages.
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Our Discussion of Model Issues

Lessons Learned From Literature
The random error term εx ,t in (1) is necessary in order to avoid the unrealistic
implication that the central death rates are completely dependent across ages.
Due to the presence of these random errors εx ,t ’s, the two-step inference
procedure proposed by Lee and Carter (1992) may be inconsistent.
Hence it is questionable for the existing claim on unit root mortality index and the
use of bootstrap methods to quantify the forecast uncertainty of future mortality
rates.
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Proposed Model

First we propose to replace (1) by

log m(x , t) = αx + βx kt + εx ,t ,
M∑

x=1
βx = 1,

M∑
x=1

αx = 0, (4)

kt = µ+ φkt−1 + et , (5)

where et ’s and εx ,t ’s are random errors with zero mean and finite variance for each x .
It is clear that we do not directly impose a constraint on the unobserved random
mortality index kt to ensure that the proposed model is identifiable. We also remark
that the assumption of

∑M
x=1 αx = 0 is not restrictive at all as we can simply move the

sum to kt if
∑M

x=1 αx 6= 0.
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Estimation

We need a different statistical inference without using the singular value decomposition
method.
Put Zt =

∑M
x=1 log m(x , t) and ηt =

∑M
x=1 εx ,t for t = 1, · · · ,T . Then, by noting that∑M

x=1 αx = 0 and
∑M

x=1 βx = 1, we have

Zt = kt + ηt for t = 1, · · · ,T . (6)

When {kt} is nonstationary such as unit root (i.e., φ = 1 in (5)) or near unit root (i.e.,
φ = 1 + γ/T for some constant γ 6= 0 in (5)), kt dominates ηt as t large enough, and
so Zt behaves like kt in this case.
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Estimation

This motivates us to minimize the following least squares

T∑
t=2

(Zt − µ− φZt−1)2 ,

and obtain the least squares estimator for µ and φ as
µ̂ =

∑T
s=2 Zs

∑T
t=2 Z2

t−1−
∑T

s=2 Zs−1
∑T

t=2 ZtZt−1

(T−1)
∑T

t=2 Z2
t−1−(

∑T
t=2 Zt−1)2

,

φ̂ = (T−1)
∑T

t=2 ZtZt−1−
∑T

s=2 Zs
∑T

t=2 Zt−1

(T−1)
∑T

t=2 Z2
t−1−(

∑T
t=2 Zt−1)2

.
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Estimation

Similarly, by minimizing the following least squares

T∑
t=1

(log m(x , t)− αx − βx Zt)2 ,

we obtain the least squares estimator for αx and βx as
α̂x =

∑T
s=1 log m(x ,s)

∑T
t=1 Z2

t −
∑T

s=1 log m(x ,s)Zs
∑T

t=1 Zt

T
∑T

t=1 Z2
t −(
∑T

t=1 Zt)2
,

β̂x = T
∑T

s=1 log m(x ,s)Zs−
∑T

s=1 log m(x ,s)
∑T

t=1 Zt

T
∑T

t=1 Z2
t −(
∑T

t=1 Zt)2
.
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Bias Correction

The above estimation solves the following score equations for x = 1, . . . ,M:
∑T

t=2{Zt − µ− φZt−1} = 0,∑T
t=2{Zt − µ− φZt−1}Zt−1 = 0,∑T
t=2{log m(x , t)− αx − βx Zt} = 0,∑T
t=2{log m(x , t)− αx − βx Zt}Zt = 0.

(7)
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Bias Correction

By noting that the inconsistency of the least squares estimators via solving (7) is due
to the correlation between Zt − µ0 − φ0Zt−1 = et + ηt − φ0ηt−1 and
Zt−1 = kt−1 + ηt−1, we propose the simple bias corrected estimators via solving the
following modified score equations:

∑T
t=3{Zt − µ− φZt−1} = 0,∑T
t=3{Zt − µ− φZt−1}Zt−2 = 0,∑T
t=3{log m(x , t)− αx − βx Zt} = 0,∑T
t=3{log m(x , t)− αx − βx Zt}Zt−1 = 0,

(8)
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Bias Correction

which give

µ̂ =
∑T

s=3 Zs
∑T

t=3 Zt−1Zt−2 −
∑T

s=3 Zs−1
∑T

t=3 ZtZt−2

(T − 2)
∑T

t=3 Zt−1Zt−2 −
∑T

s=3 Zs−1
∑T

t=3 Zt−2
,

φ̂ = (T − 2)
∑T

t=3 ZtZt−2 −
∑T

s=3 Zs
∑T

t=3 Zt−2

(T − 2)
∑T

t=3 Zt−1Zt−2 −
∑T

s=3 Zs−1
∑T

t=3 Zt−2
,

α̂x =
∑T

s=3 log m(x , s)
∑T

t=3 ZtZt−1 −
∑T

s=3 log m(x , s)Zs−1
∑T

t=3 Zt

(T − 2)
∑T

t=3 ZtZt−1 −
∑T

s=3 Zs
∑T

t=3 Zt−1
,

β̂x = (T − 2)
∑T

t=3 log m(x , t)Zt−1 −
∑T

s=3 log m(x , s)
∑T

t=3 Zt−1

(T − 2)
∑T

t=3 ZtZt−1 −
∑T

s=3 Zs
∑T

t=3 Zt−1

for x = 1, . . . ,M. We remark that the estimator φ̂ is the same as the modified Yule-Walker
estimator in Staudenmayer and Buonaccorsi (2005) for a time series model with measurement
errors, and obviously we have

∑M
x=1 α̂x = 0 and

∑M
x=1 β̂x = 1.
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Regularity Conditions
In order to derive the asymptotic properties of the above proposed estimators, we
assume the following regularity conditions for the stationary errors in (4) and (5).

C1) E (et) = 0, E (εx ,t) = 0 for t = 1, · · · ,T and x = 1, · · · ,M;

C2) there exist β > 2 and δ > 0 such that supt E |et |β+δ <∞, supt E |εx ,t |β+δ <∞ for
x = 1, · · · ,M;

C3) σ2
e = limT→∞ E{T−1(

∑T
t=1 et)2} ∈ (0,∞) and

σ2
x = limT→∞ E{T−1(

∑T
t=1 εx ,T )2} ∈ (0,∞) for x = 1, · · · ,M;

C4) sequence {(et , ε1,t , · · · , εM,t)τ} is strong mixing with mixing coefficients

αm = sup
k≥1

sup
A∈Fk

1 ,B∈F
∞
k+m

|P(A ∩ B)− P(A)P(B)|

such that
∑∞

m=1 α
1−2/β
m <∞, where Fk+m

k denotes the σ-field generated by
{(et , ε1,t , · · · , εM,t)τ : k ≤ t ≤ k + m} and Aτ denotes the transpose of the matrix or
vector A.
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Asymptotic Results

To present the asymptotic distribution of the proposed bias-corrected estimators, we
need some notations. Put θ = (µ, φ, α1, β1, · · · , αM−1, βM−1)τ ,
θ̂ = (µ̂, φ̂, α̂1, β̂1, · · · , α̂M−1, β̂M−1)τ and let
θ0 = (µ0, φ0, α1,0, β1,0, · · · , αM−1,0, βM−1,0)τ denote the true value of θ. Note that
we exclude αM and βM in the above definitions due to the constraints

∑M
x=1 αx ,0 = 0

and
∑M

x=1 βx ,0 = 1.
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Asymptotic Distribution

Theorem

Assume µ0 6= 0, and {(et , ε1,t , · · · , εM,t)τ : t = 1, . . . ,T} is a sequence of independent
and identically distributed random vectors with means zero and finite covariance
matrix.
i) When |φ0| < 1 independent of T (i.e., stationary case), we have

√
T Γ{θ̂ − θ0}

d→ N(0,Σ).

ii) When φ0 = 1 + ρ/T for some constant ρ ∈ R (i.e., near unit root if ρ 6= 0 and unit
root if ρ = 0), we have

DT{θ̂ − θ0}
d→ N(0, Γ̃−1Σ̃Γ̃−1),

where DT is a diagonal matrix with T 1/2 in the odd diagonal elements and T 3/2 in the
even diagonal element.
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Extension — Bivariate Lee-Carter Mortality Model

Bivariate mortality model

log m(1)(x , t) = α(1)
x + β(1)

x k(1)
t + ε

(1)
x ,t , (9)

log m(2)(x , t) = α(2)
x + β(2)

x k(2)
t + ε

(2)
x ,t , (10)

k(1)
t = µ(1) + φ(1)k(1)

t−1 + e(1)
t , (11)

k(1)
t − k(2)

t = µ(2) + φ(2)(k(1)
t−1 − k(2)

t−1) + e(2)
t , (12)

where {(ε(1)
x ,t , ε

(2)
x ,t)τ}Tt=1 is a sequence of independent and identically distributed

random vectors with zero means and finite variances for each x , {(e(1)
t , e(2)

t )τ}Tt=1 is a
sequence of independent and identically distributed random vectors with zero means
and finite variances.
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Extension — Bivariate Lee-Carter Mortality Model

Still, we avoid adding constraints to the random mortality indexes by assuming that

M∑
x=1

α(i)
x = 0,

M∑
x=1

β(i)
x = 1, i = 1, 2, (13)

Define η(i)
t =

∑M
x=1 ε

(i)
x ,t and Z (i)

t =
∑M

x=1 log m(i)(x , t), then we have

Z (i)
t = k(i)

t + η
(i)
t , i = 1, 2.

When both {k(1)
t } and {k(1)

t − k(2)
t } are near unit root or unit root, as t large enough,

Z (1)
t and k(1)

t are approximately the same, and Z (1)
t − Z (2)

t and k(1)
t − k(2)

t are
approximately the same.
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Estimation

Therefore, we could employ the least squares estimators via solving the following score
functions:

∑T
t=2{Z

(1)
t − µ(1) − φ(1)Z (1)

t−1} = 0∑T
t=2{Z

(1)
t − µ(1) − φ(1)Z (1)

t−1}Z
(1)
t−1 = 0∑T

t=2{Z
(1)
t − Z (2)

t − µ(2) − φ(2)(Z (1)
t−1 − Z (2)

t−1)} = 0∑T
t=2{Z

(1)
t − Z (2)

t − µ(2) − φ(2)(Z (1)
t−1 − Z (2)

t−1)}(Z (1)
t−1 − Z (2)

t−1) = 0

(14)

and { ∑T
t=1{log m(i)(x , t)− α(i)

x − β(i)
x Z (i)

t } = 0∑T
t=1{log m(i)(x , t)− α(i)

x − β(i)
x Z (i)

t }Z
(i)
t = 0

(15)
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Estimation

By noting that the inconsistency of the least squares estimators via solving (14) is due
to the correlation between Z (1)

t − µ(1)
0 − φ

(1)
0 Z (1)

t−1 = e(1)
t + η

(1)
t − φ

(1)
0 η

(1)
t−1 and

Z (1)
t−1 = k(1)

t−1 + η
(1)
t−1, we follow the idea of shifting a lag and propose the unified bias

corrected estimators via solving the following modified score equations:

∑T
t=3{Z

(1)
t − µ(1) − φ(1)Z (1)

t−1} = 0∑T
t=3{Z

(1)
t − µ(1) − φ(1)Z (1)

t−1}Z
(1)
t−2 = 0∑T

t=3{Z
(1)
t − Z (2)

t − µ(2) − φ(2)(Z (1)
t−1 − Z (2)

t−1)} = 0∑T
t=3{Z

(1)
t − Z (2)

t − µ(2) − φ(2)(Z (1)
t−1 − Z (2)

t−1)}(Z (1)
t−2 − Z (2)

t−2) = 0

(16)

and { ∑T
t=2{log m(i)(x , t)− α(i)

x − β(i)
x Z (i)

t } = 0∑T
t=2{log m(i)(x , t)− α(i)

x − β(i)
x Z (i)

t }Z
(i)
t−1 = 0

(17)
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Asymptotic Results

To present the asymptotic distribution of the proposed bias-corrected estimators, we
need some notations.
Put

θ = (µ(1), φ(1), µ(2), φ(2), α
(1)
1 , β

(1)
1 , α

(2)
1 , β

(2)
1 , · · · , α(1)

M−1, β
(1)
M−1, α

(2)
M−1, β

(2)
M−1)τ ,

and let

θ̂ = (µ̂(1), φ̂(1), µ̂(2), φ̂(2), α̂
(1)
1 , β̂

(1)
1 , α̂

(2)
1 , β̂

(2)
1 , · · · , α̂(1)

M−1, β̂
(1)
M−1, α̂

(2)
M−1, β̂

(2)
M−1)τ

and

θ0 = (µ(1)
0 , φ

(1)
0 , µ

(2)
0 , φ

(2)
0 , α

(1)
1,0, β

(1)
1,0, α

(2)
1,0, β

(2)
1,0, · · · , α

(1)
M−1,0, β

(1)
M−1,0, α

(2)
M−1,0, β

(2)
M−1,0)τ

denote the above bias-corrected estimators and the true value of θ, respectively. Note that we
exclude α(i)

M and β(i)
M in the above definitions due to the constraints

∑M
x=1 α

(i)
x ,0 = 0 and∑M

x=1 β
(i)
x ,0 = 1 for i = 1, 2.
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Asymptotic Results — Unit Root Case

Theorem

Assume models (9) to (13). Further assume µ(1)
0 6= 0, µ(2)

0 6= 0, φ(1)
0 = 1 + ρ1

T and
φ

(2)
0 = 1 + ρ2

T for some ρ1, ρ2 ∈ R. Then

DT (θ̂ − θ0) d→ N(0,Γ−1
1 Σ1Γ−1

1 ) as T →∞,

where Σ1 and Γ1 are respectively defined in the appendix, and

DT = diag(
√

T ,T 3/2, · · · ,
√

T ,T 3/2).
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Asymptotic Results — Stationary Case

Theorem

Suppose models (9) and (11) hold with (13). Further assume µ(1)
0 6= 0, µ(2)

0 6= 0,
|φ(1)

0 | < 1 and |φ(2)
0 | < 1. Then
√

T (θ̂ − θ0) d→ N(0,Γ−1
2 Σ2Γ−1

2 ) as T →∞,

where Σ2 and Γ2 are respectively defined in the appendix.

We also have asymptotic results for mixed cases (one of the two series {k(1)
t } and

{k(1)
t − k(2)

t } is near unit root or unit root; the other is stationary).



Introduction Lee-Carter’s Method Proposed Model and Bias Correction Data Analysis and Simulation Conclusions

Data Analysis

We investigate the US mortality data of male and female cohorts from year 1933 to
year 2017, which are available from the Human Mortality Database
(https://www.mortality.org).
We fit the Lee-Carter model based on singular value decomposition, as well as the
proposed method in this paper. (For comparison purposes, we fit the proposed least
squares estimate in this paper without and with bias correction.)
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Data Analysis — Lee-Carter Estimates

Figure: Estimates of Bivariate Model Parameters Based on U.S. Cohorts

Lee-Carter Estimates of α
(i)
x and β

(i)
x

x 1 2 3 4 5 6 7 8 9 10
α

(1)
x -6.265 -6.128 -5.850 -5.482 -5.060 -4.624 -4.215 -3.810 -3.429 -3.028
β

(1)
x 0.085 0.091 0.104 0.109 0.108 0.109 0.104 0.101 0.098 0.093
α

(2)
x -7.018 -6.741 -6.385 -5.994 -5.582 -5.169 -4.780 -4.359 -3.941 -3.477
β

(2)
x 0.134 0.126 0.119 0.106 0.096 0.091 0.083 0.081 0.082 0.084

Lee-Carter Estimates of µ(i) and φ(i)

µ(1) φ(1) µ(2) φ(2)

-0.113 0.994 0.049 0.958
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Data Analysis — Without Bias Correction

Figure: Estimates of Bivariate Model Parameters Based on U.S. Cohorts

Estimates of α
(i)
x and β

(i)
x by the Proposed Model (Without Bias Correction)

x 1 2 3 4 5 6 7 8 9 10
α

(1)
x -2.187 -1.755 -0.877 -0.276 0.129 0.569 0.741 0.994 1.245 1.415
β

(1)
x 0.085 0.091 0.104 0.109 0.108 0.108 0.103 0.100 0.098 0.093
α

(2)
x 0.094 -0.030 -0.067 -0.344 -0.459 -0.317 -0.318 -0.020 0.444 1.017
β

(2)
x 0.133 0.126 0.118 0.106 0.096 0.091 0.083 0.081 0.082 0.084

Estimates of µ(i) and φ(i) by the Proposed Model (Without Bias Correction)

µ(1) φ(1) µ(2) φ(2)

-0.622 0.989 0.274 0.958
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Data Analysis — With Bias Correction

Figure: Estimates of Bivariate Model Parameters Based on U.S. Cohorts

Estimates of α
(i)
x and β

(i)
x by the Proposed Model (With Bias Correction)

x 1 2 3 4 5 6 7 8 9 10
α

(1)
x -2.294 -1.867 -0.954 -0.289 0.139 0.610 0.809 1.053 1.324 1.469
β

(1)
x 0.083 0.089 0.102 0.108 0.109 0.109 0.105 0.101 0.099 0.094
α

(2)
x -0.012 -0.105 -0.106 -0.330 -0.447 -0.285 -0.278 7.739e-3 0.488 1.068
β

(2)
x 0.131 0.124 0.118 0.106 0.096 0.091 0.084 0.082 0.083 0.085

Estimates of µ(i) and φ(i) by the Proposed Model (With Bias Correction)

µ(1) φ(1) µ(2) φ(2)

-0.856 0.985 0.285 0.956
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Data Analysis

It would be cautious to use the Lee-Carter inference and the proposed least
squares estimation without bias correction.

The estimate for φ(1) based on the Lee-Carter inference is much closer to one (i.e.,
unit root) than the proposed least squares estimation, and the estimates for µ(i) and
φ(i) are different for the proposed least squares estimation with or without bias
correction. As estimates for φ(2) based on these three inferences are ‘significantly’
smaller than one, it suggests that {k(1)

t − k(2)
t } is a stationary sequence.
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Out-of-Sample Forecast

Figure: Solid lines represent true historic values; dashed lines represent forecasts by Lee-Carter
model; dotted lines represent forecasts according to the proposed least squares estimators
without bias correction; dash-dotted lines are forecasts by proposed bias corrected estimators
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Simulation Study — Setup

Simulation setting:
We simulate 10,000 random samples with sample size T = 80, 150 and 300 with
parameters being the proposed bias-corrected estimates in fitting the real dataset
above except φ(1) = 1 and φ(2) = 0.95. We choose εx ,t and et to be independent
and identically distributed random variables with N(0, 0.12).

Many papers in the study of longevity risk simply assume φ(1) = 1
This section uses simulated data to show that the Lee-Carter inference and the
proposed least squares estimation without bias correction lead to an inconsistent
inference when φ(1) = 1 and |φ(2)| < 1, but the proposed bias-corrected inference
performs well.
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 80
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 80
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 80
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 150
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 150
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Simulation Study

Figure: Estimates with standard deviations in brackets for T = 150
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Simulation Study

The proposed least squares estimates without bias correction for µ(2) and φ(2) are
inconsistent;
The Lee-Carter inference clearly gives an inconsistent estimation for φ(2) when
T = 150;
The standard errors for estimating α(i)

x based on the Lee-Carter inference are
much larger than those based on the proposed least squares estimation with or
without bias correction;
The bias-corrected inference performs quite well.
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Conclusions

How mortality rates are modeled have quite a few implications in annuity and
pension fund practices because parametric mortality models can be relied on to
manage longevity risk
Our proposed model is based on our understanding of pitfalls of LC model

Different asymptotic results under different cases whether AR(1) process is
stationary or unit root
Unit root test rejects null hypothesis for female and combined mortality rates; fails
to reject for male rates

Our bias corrected estimators overcome the issue of estimator inconsistency
Confirmed by simulation study that shows BC estimators display smaller bias and
smaller mean squared error
Another dedicated paper that argues choice of AR(1) is adequate
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Conclusions

Methodology is now applied to a two population case
Since underwriters have policyholders from multiple populations, modeling multiple
populations allows for quantifying the risk of whole portfolio
Asymptotic results; confirmed by nice simulation study results

Implications for longevity hedging:
Can use derivatives to hedge against time-t values of longevity deltas of (unpaid)
annuity liability
Risk transfer of longevity risk from annuity underwriter / pension fund to another
financial institution
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Thank you!
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