MOODY'S

Health and Combo Product Modeling Challenges and Solutions

What are Health and Combo Products?

PRODUCTS THAT...

- » Pay ongoing benefits
- » Pay multiple types of benefits
- » Pay interdependent benefits
- » Pay benefits to multiple lives
- » Pay benefits depending on
 "where" a policyholder is

EXAMPLES...

- » Critical Illness (CI)
- Short Term Disability, Long Term
 Disability, Accident and Sickness,
 Group Benefits, Worksite Benefits
- » Long Term Care (LTC)
- » Accelerated Benefits, Whole Life/UL+LTC Rider

KEY FEATURES...

- » Premium Waiver
- » Living Benefits with Min/Max/Waiting Periods
- » Benefit Caps
- » Shared Care
- » Extension of Benefits
- » Residual Benefits
- » Restoration of Benefits

Standard Life and Annuity Models

WHEN MODELING LIFE AND ANNUITY BUSINESS A "SINGLE STATE MODEL" IS OFTEN SUFFICIENT

A policyholder is either "alive" (ie. "alive" is the single state) or has been removed from the projection due to death, lapse, single incidence, etc...

Simple Health Models

WHEN MODELING LIFE AND ANNUITY BUSINESS A "SINGLE STATE MODEL" IS OFTEN SUFFICIENT

The claim state may be modeled explicitly, or a "claims cost approach" might be used. Often we need at least two states: "active" and "claim". Recoveries from the claim to active state may or may not be modeled

More Complex Health and Combo Product Models

WHEN MODELING LIFE AND ANNUITY BUSINESS A "SINGLE STATE MODEL" IS OFTEN SUFFICIENT

States are modeled explicitly – no "claims cost approaches". Often a desirable model would include at least three states – "active never claimed", "claim" and "active after claim". Perhaps a model would also include several claim states – "claim state 1", "claim state 2", "claim state 3", etc...

Complex Health and Combo Product Modeling Techniques

- » Standard actuarial modeling techniques still apply
- » Very broadly speaking, same as for life and annuity business
 - » Input inforce file, product features and actuarial assumptions; develop holistic probabilistic or stochastic model; output cash flows, reserves, and other income statement and balance sheet items
- » Model the inforce population over time, project things into the future
 - » Project single "outer loop" path, or multiple nested "inner loops" along single "outer loop"
- » Develop resulting cash flows as key output
 - » Use cash flow projections as basis for all analyses
- » Calculate functions of cash flows, potentially over many scenarios
 - » Calculate functions of liability cash flows such as: pricing metrics, reserves, capital
 - » Calculate advanced integrated/iterative functions of asset and liability cash flows, e.g., VM-20, BMA reserves

» Stochastic approach is desirable in many cases, particularly when path-dependency is significant MOODY'S ANALYTICS

Probabilistic vs. Stochastic Approaches

- » Probabilistic approaches are much more common and familiar, but have significant limitations for multiple-state modeling
 - » Move "pieces" of the life being projected between states, remove "pieces" for decrements
 - » Attempt to capture every possible path in a single projection
 - » This becomes an intractable problem computationally very quickly, as the number of possible paths grows exponentially even for models with a small number of states
 - » Approximations are essential
- » Stochastic approaches offer significant advantages for multiple-state modeling in many cases
 - » For a given stochastic trial, move the "whole" life from state-to-state, based on a Monte Carlo random walk
 - » Path-dependency is easily captured within a given trial
 - » Running a large number of trials and averaging produces a theoretically better answer than a single probabilistic projection

Complex Health and Combo Product Modeling Challenges

LACK OF ASSUMPTIONS

- A multi-state model is clearly better in some cases, but does the company have the data to support a multiple-state transition model
- » If yes, model care-type transfers?

LACK OF MODEL SOPHISTICATION

- Can current systems handle a multiple-state projection model, along with all downstream calculations and reporting
- Multi-state models are naturally slower compared to single state models
- Projecting an "inner loop" along an "outer loop" in a multiple-state model is calculation-intensive
- Modeling path-dependent
 benefits in a reasonable manner
 is tricky and calculation-intensive

LACK OF SPEED AND EASE OF USE

- » Can the solution be run efficiently and easily?
- Multi-state, probabilistic projections can take a long time to run, especially when there's significant path-dependency
- » Models can be hard to use and audit

Modeling Solutions

GET BETTER ASSUMPTIONS

- » Experience studies
- » Consulting partners
- » Industry rates

IMPROVE MODELING APPROACHES

- » Move from claim-cost to first principles
- Move from single claim state to multiple claim states with full transition model
- Capture path-dependency of benefits, charges, assumptions, and features
- Model under a Monte Carlo random walk projection approach

IMPROVE SPEED AND EASE OF USE

- » Improve algorithms under probabilistic projections
- » Develop better models

Combo Product Modeling Case Study

- » First principles combo product model
- » Whole life, with accelerated benefits, and extension of benefits
 - » \$1000 of face amount
 - » Attained age premiums & 100% year 1 commission
 - » Attained age incidence rates
 - » No recoveries
 - » Benefits are accelerated at \$10 per month while on claim; health claims reduce death benefit payable
 - » Extension of benefits for 0, 5, or 10 years upon exhaustion of original face amount
- » Start with basic whole life, build up complexity
- » Assess impact of combo product features
- » Assess impact of probabilistic vs stochastic runs

Combo Product Modeling Case Study – Some Results

<u>Product</u>	Probabilistic	<u>Stochastic</u> 100	<u>Stochastic</u> 1000	<u>Stochastic</u> 10000	<u>Stochastic</u> 20000	<u>Stochastic</u> 30000+
Basic WL	(37.7)	(51.1)	(32.7)	(39.6)	(37.7)	(37.7)
WL + acceleration	(32.1)	(46.0)	(26.1)	(27.7)	(30.6)	(31.9)
WL + acceleration + extension60	(29.8)	(51.8)	(23.4)	(31.2)	(30.4)	(30.2)
WL + acceleration + extension120	(28.4)	(49.3)	(21.9)	(29.6)	(28.8)	(28.7)

- » Results convergence to the "probabilistic mean", as the number of stochastic trials increases
- » The difference between the probabilistic run, and the 30000+ trial stochastic run is generally quite small, but increases as the path-dependency of the product design increases

Combo Product Modeling – What's Next?

- » Better, more sophisticated and insightful models!
- » Improved model controls and governance combo product models are complicated!
- » 2015 AAA LTC Technical Subgroup
 - » Stochastic approach recommended
 - » Spreadsheets are insufficient much too slow
 - » More work to do how to comprehensively include all risks? how to validate besides comparison to probabilistic results?
- » Engage with your modeling partners!