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I Problem Statement: Pricing in Non-Life Insurance

* Pricing in non-life insurance: determining the
premium the insured pays for risk transfer

 Significance: insurers can price policies
competitively while covering risk effectively

e Calculation is complex because of highly correlated
variables, unknown values, non-numerical data,
asymmetric distributions, and other external
factors

e Qutliers distorting predictions in traditional
models

* As we shift to unprecedented shifts, risk categories
such as cyber emerge in the era of autonomous
vehicles

e This study applies predictive linear and logistic
regression models to calculate premiums for auto
insurance claims
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Data Collection and
Preparation

e Data source: Spanish non-life motor insurance
company, published in 2024, records made from
11/2015-12/2019

e Coding platform: RStudio
* QOver 31,000 records
e Training set and test split

* Exploratory Data Analysis (EDA): identify patterns,
correlations, and variable distributions of
predictors to the response variable as premium



Distinctions of Europe

Peugeot 208

Weight 4,021 1bs/ 1,824 kg
Price $ 35,730/€ 32,401
Efficiency: 25 mpg/9.4 L/100 km

Europe Weight 2,348 Ibs/ 1,065 kg America
Price $ 22,900/€ 18,125

Efficiency: 50 mpg/4.7 L/100 km

e Driving habits: Urban design favoring public e Driving habits: longer, more frequent highway
transportation, stricter speed limits commutes, higher speed limits

e Regulatory environments: stricter data protection, may e Regulatory environments: less strict regulations,
rely more on anonymous and vehicle-type data supports more data-intensive models

e Risk types: high prevalence of theft, small city-type cars * Risk types: severe weather events (like hurricanes),

high-power vehicles
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e Removing N/As
Type_fuel Area
* Date variables into quantitative
predictors (i.e. date of birth into |
age) Years_since_start_contract
* Removing all the blanks (unknown Years_since_last_renewal
values) in the date of lapse variable Years till next renewal
* Factors: Type of fuel, vehicle type, Years_since_license

area of use, whether more drivers

are declared, type of payment Years_till_lapse

* Clean data file: autopremclean.csv



autopremclean.csv

I Response Variable: Premium

Distribution:

* Net amount associated
with policy during the
current year

Histogram of Premium
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Vehicle Attributes

Value of vehicle
Weight- kilograms
Length- meters
Cylinder capacity
Horsepower

Type of vehicle-
motorbikes, vans,
passenger cars, agricultural
vehicles

Type of fuel- gas vs diesel

Year of registration

Age
Years since license

Payment method-
semiannual vs annual

Channel the policy was
contracted- agent vs
brokers

Policy’s claims frequency
history
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Predictor Insights
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Data:
Interaction
terms
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Addressing Multicollinearity

Notable correlations: Weight
and length, cylinders and
horsepower, policies in force
and maximum policies, value of
vehicle and weight, value of
vehicle and cylinder capacity,
etc.




I Data: Notable transformations

g 13
Logarithmic Transformations: § 188 g 5 ;
e Examples: the value of the vehicle, horsepower, & é N 2 o0 . : o
claims history, years since the contract started 3 _ i e ¢ 6o o .
e Binary variables :_ ””0””5““3 :
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| Quadratic Transformations:
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Premium

Data: Insignificant Predictors
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Low Predictive Power

* Unhelpful, shows
little risk

Redundancy

* If highly correlated
with other terms
(i.e. policies)

Focus on Significant
Drivers of Premiumes:

* Prioritize variables
that directly affect
premium



Model types: Linear vs Logistic

V= b:] + blx 4= Linear Model

~

()
Logistic Model =]
8

' ! =
-
1 + g—(bo+byx) c

a

@

o

Linear:

Predict continuous outcomes
Assumed linear relationship between predictors and response
Sensitive to outliers

Weak because more likely to be non-linear relationships

e
Straight line
Y Predicted Y can exceed
0 and 1 range
y=0

X
Independent Variable

Logistic:
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* Handles binary outcomes effectively

* Valued for segmenting different risk levels

* Probability that the premium is higher or lower

* Less interpretable for complex relationships




Model Building: Refining for Optimal Fit

Residuals analysis to
confirm:

Begin with models * VIF to detect RA2

AIC (Akaike Information
Drop or combine highly Criterion)
Drop insignificant correlated variables

including all relevant multicollinearity

predictors. No patterns (linear

del
K-Fold Cross Validation: el

* To not get unreliable Splits data into folds
Add interaction terms, coefficient estimates
transform variables

variables

Homoscedasticity

No influential outliers
skewing the results

Starting Simple & Handling Model Comparison Assumptions Validation
Refinement Multicollinearity

> I > >



I Building Linear Models

Model 1

Added variables highly correlated with premium all the
way to the last one

Included all 26 variables
RA2=0.2753

AIC = 316893.2

VIF: weight > 5

Model 2

Added interaction terms
Took out insignificant terms
RA2 =0.1636

AIC = 320509.1

VIF: 3 terms above 50
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Model 3

Took out insignificant variables until all had the
highest significance

R*"2 =0.2751

AIC = 316890.6
VIF: weight > 5




Residuals vs Fitted
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I Building Logistic Models .

Residuals vs Fitted
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Logged non-binary variables
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12 predictors total (3 interaction terms) 10 5 0 :3, ]
Only cylinders are insignificant Predicted values 3

Models 4 0

AIC=29193

VIF: no evidence of multicollinearity | | | |

69% accurate
Predicted values

Model 5 Model 6
* 9 predictors total (1 interaction term) Logged non-binary variables
* Length and weight are insignificant 9 predictors total (1 interaction term)
* AIC=29548.82

* VIF: length and weight > 16

Only age is insignificant
AIC = 29295

VIF: no evidence of multicollinearity
° (0]
Lo GRS 68.5 % accurate




° o Residuals vs Fitted
} Final Models
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Conclusion and
ext Steps: o o
' t° tErltw)hanced data collection and model Im pl Icatlons for
refinement
* Working with different data FUtu re Work

e Build similar models for motorbikes

Self-Driving Cars:

* Potential for predictive analytics on their
premiums

* Results show vehicle characteristics had an
impact on this model compared to
descriptions of the driver

* Fully autonomous vehicle insurance may
focus more on software and hardware
reliability.
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LinkedIn:
www.linkedin.com/in/kylie-wilkin
Email: kyliejwilkin@gmail.com
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